References

Berry, J., & Bjorkman, O. (1980). Photosynthetic Response and Adaptation to Temperature in Higher Plants. Annual Review of Plant Physiology, 31(1), 491–543. https://doi.org/10.1146/annurev.pp.31.060180.002423
Blonder, B., & Michaletz, S. T. (2018). A model for leaf temperature decoupling from air temperature. Agricultural and Forest Meteorology, 262, 354–360. https://doi.org/10.1016/j.agrformet.2018.07.012
Cavaleri, M. A. (2020). Cold-blooded forests in a warming world. New Phytologist, 228(5), 1455–1457. https://doi.org/10.1111/nph.16916
Dong, N., Prentice, I. C., Harrison, S. P., Song, Q. H., Zhang, Y. P., & Sykes, M. (2017). Biophysical homoeostasis of leaf temperature: A neglected process for vegetation and land-surface modelling. Global Ecology and Biogeography, 26(9), 998–1007. https://doi.org/10.1111/geb.12614
Doughty, C. E., Keany, J. M., Wiebe, B. C., Rey-Sanchez, C., Carter, K. R., Middleby, K. B., Cheesman, A. W., Goulden, M. L., Rocha, H. R. da, Miller, S. D., Malhi, Y., Fauset, S., Gloor, E., Slot, M., Oliveras Menor, I., Crous, K. Y., Goldsmith, G. R., & Fisher, J. B. (2023). Tropical forests are approaching critical temperature thresholds. Nature, 1–7. https://doi.org/10.1038/s41586-023-06391-z
Drake, J. E. (2023). A data-intensive documentation of plant ecosystem thermoregulation across spatial and temporal scales. New Phytologist, 238(3), 921–923. https://doi.org/10.1111/nph.18819
Drake, J. E., Harwood, R., Vårhammar, A., Barbour, M. M., Reich, P. B., Barton, C. V. M., & Tjoelker, M. G. (2020). No evidence of homeostatic regulation of leaf temperature in Eucalyptus parramattensis trees: integration of CO2 flux and oxygen isotope methodologies. New Phytologist, 228(5), 1511–1523. https://doi.org/10.1111/nph.16733
Duursma, R. A. (2015). Plantecophys - An R Package for Analysing and Modelling Leaf Gas Exchange Data. PLOS ONE, 10(11), e0143346. https://doi.org/bkmj
Franklin, O., Harrison, S. P., Dewar, R., Farrior, C. E., Brännström, Å., Dieckmann, U., Pietsch, S., Falster, D., Cramer, W., Loreau, M., Wang, H., Mäkelä, A., Rebel, K. T., Meron, E., Schymanski, S. J., Rovenskaya, E., Stocker, B. D., Zaehle, S., Manzoni, S., … Prentice, I. C. (2020). Organizing principles for vegetation dynamics. Nature Plants, 6(5), 444453. https://doi.org/ghmz7g
Guo, Z., Still, C. J., Lee, C. K. F., Ryu, Y., Blonder, B., Wang, J., Bonebrake, T. C., Hughes, A., Li, Y., Yeung, H. C. H., Zhang, K., Law, Y. K., Lin, Z., & Wu, J. (2023). Does plant ecosystem thermoregulation occur? An extratropical assessment at different spatial and temporal scales. New Phytologist, 238(3), 1004–1018. https://doi.org/10.1111/nph.18632
Harrison, S. P., Cramer, W., Franklin, O., Prentice, I. C., Wang, H., Brännström, Å., Boer, H., Dieckmann, U., Joshi, J., Keenan, T. F., Lavergne, A., Manzoni, S., Mengoli, G., Morfopoulos, C., Peñuelas, J., Pietsch, S., Rebel, K. T., Ryu, Y., Smith, N. G., … Wright, I. J. (2021). Eco-evolutionary optimality as a means to improve vegetation and land-surface models. New Phytologist, 231(6), 2125–2141. https://doi.org/10.1111/nph.17558
Helliker, B. R., & Richter, S. L. (2008). Subtropical to boreal convergence of tree-leaf temperatures. Nature, 454(7203), 511–514. https://doi.org/10.1038/nature07031
Jiang, C., Ryu, Y., Wang, H., & Keenan, T. F. (2020). An optimality-based model explains seasonal variation in C3 plant photosynthetic capacity. Global Change Biology, 26(11), 6493–6510. https://doi.org/10.1111/gcb.15276
Joshi, J., Stocker, B. D., Hofhansl, F., Zhou, S., Dieckmann, U., & Prentice, I. C. (2022). Towards a unified theory of plant photosynthesis and hydraulics. Nature Plants. https://doi.org/10.1038/s41477-022-01244-5
Körner, C., & Hiltbrunner, E. (2018). The 90 ways to describe plant temperature. Perspectives in Plant Ecology, Evolution and Systematics, 30, 16–21. https://doi.org/10.1016/j.ppees.2017.04.004
Leuning, R., Kelliher, F. M., Pury, D. G. G., & Schulze, E.-D. (1995). Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies. Plant, Cell and Environment, 18(10), 1183–1200. https://doi.org/10.1111/j.1365-3040.1995.tb00628.x
Mahan, J. R., & Upchurch, D. R. (1988). Maintenance of constant leaf temperature by plants. Hypothesis-limited homeothermy. Environmental and Experimental Botany, 28(4), 351–357. https://doi.org/10.1016/0098-8472(88)90059-7
Maire, V., Martre, P., Kattge, J., Gastal, F., Esser, G., Fontaine, S., & Soussana, J.-F. (2012). The Coordination of Leaf Photosynthesis Links C and N Fluxes in C3 Plant Species. PLoS ONE, 7(6), e38345. https://doi.org/10.1371/journal.pone.0038345
Michaletz, S. T., Weiser, M. D., McDowell, N. G., Zhou, J., Kaspari, M., Helliker, B. R., & Enquist, B. J. (2016). The energetic and carbon economic origins of leaf thermoregulation. Nature Plants, 2(9), 16129. https://doi.org/10.1038/nplants.2016.129
Muir, C. D. (2019). tealeaves: an R package for modelling leaf temperature using energy budgets. AoB PLANTS, 11(6), plz054. https://doi.org/10.1093/aobpla/plz054
Peng, Y., Bloomfield, K. J., Cernusak, L. A., Domingues, T. F., & Colin Prentice, I. (2021). Global climate and nutrient controls of photosynthetic capacity. Communications Biology, 4(1), 462. https://doi.org/10.1038/s42003-021-01985-7
Prentice, I. C., Dong, N., Gleason, M. S., Maire, V., & Wright, J. I. (2014). Balancing the costs of carbon gain and water transport: Testing a new theoretical framework for plant functional ecology. Ecology Letters, 17(1), 82–91. https://doi.org/gf9w4m
Prentice, I. C., Liang, X., Medlyn, B. E., & Wang, Y.-P. (2015). Reliable, robust and realistic: the three R’s of next-generation land-surface modelling. Atmospheric Chemistry and Physics, 15(10), 5987–6005. https://doi.org/10.5194/acp-15-5987-2015
Smith, N. G., & Dukes, J. S. (2013). Plant respiration and photosynthesis in global-scale models: Incorporating acclimation to temperature and CO2. Global Change Biology, 19(1), 4563. https://doi.org/f4gv3p
Still, C. J., Page, G., Rastogi, B., Griffith, D. M., Aubrecht, D. M., Kim, Y., Burns, S. P., Hanson, C. V., Kwon, H., Hawkins, L., Meinzer, F. C., Sevanto, S., Roberts, D., Goulden, M., Pau, S., Detto, M., Helliker, B., & Richardson, A. D. (2022). No evidence of canopy-scale leaf thermoregulation to cool leaves below air temperature across a range of forest ecosystems. Proceedings of the National Academy of Sciences, 119(38), e2205682119. https://doi.org/10.1073/pnas.2205682119
Still, C. J., Rastogi, B., Page, G. F. M., Griffith, D. M., Sibley, A., Schulze, M., Hawkins, L., Pau, S., Detto, M., & Helliker, B. R. (2021). Imaging canopy temperature: shedding (thermal) light on ecosystem processes. New Phytologist, 230(5), 1746–1753. https://doi.org/10.1111/nph.17321
Stocker, B. D., Wang, H., Smith, N. G., Harrison, S. P., Keenan, T. F., Sandoval, D., Davis, T., & Prentice, I. C. (2020). P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production. Geoscientific Model Development, 13(3), 1545–1581. https://doi.org/10.5194/gmd-13-1545-2020
Stocker, B. D., Zscheischler, J., Keenan, T. F., Prentice, I. C., Peñuelas, J., & Seneviratne, S. I. (2018). Quantifying soil moisture impacts on light use efficiency across biomes. New Phytologist, 218(4), 14301449. https://doi.org/gg3sk4
Stocker, B., & Hufkens, K. (2021). Rpmodel v1.2.0: R package implementing the p-model. Zenodo. https://doi.org/10.5281/ZENODO.3359706
Vinod, N., Slot, M., McGregor, I. R., Ordway, E. M., Smith, M. N., Taylor, T. C., Sack, L., Buckley, T. N., & Anderson-Teixeira, K. J. (2023). Thermal sensitivity across forest vertical profiles: patterns, mechanisms, and ecological implications. New Phytologist, 237(1), 22–47. https://doi.org/10.1111/nph.18539
Wang, H., Prentice, I. C., Keenan, T. F., Davis, T. W., Wright, I. J., Cornwell, W. K., Evans, B. J., & Peng, C. (2017). Towards a universal model for carbon dioxide uptake by plants. Nature Plants, 3(9), 734–741. https://doi.org/10.1038/s41477-017-0006-8
Wang, Y.-P., & Leuning, R. (1998). A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I: Agricultural and Forest Meteorology, 91(1-2), 89–111. https://doi.org/10.1016/S0168-1923(98)00061-6