References
Berry, J., & Bjorkman, O. (1980). Photosynthetic Response and
Adaptation to Temperature in Higher Plants. Annual Review of Plant
Physiology, 31(1), 491–543. https://doi.org/10.1146/annurev.pp.31.060180.002423
Blonder, B., & Michaletz, S. T. (2018). A model for leaf temperature
decoupling from air temperature. Agricultural and Forest
Meteorology, 262, 354–360. https://doi.org/10.1016/j.agrformet.2018.07.012
Cavaleri, M. A. (2020). Cold-blooded forests in a warming
world. New Phytologist, 228(5), 1455–1457. https://doi.org/10.1111/nph.16916
Dong, N., Prentice, I. C., Harrison, S. P., Song, Q. H., Zhang, Y. P.,
& Sykes, M. (2017). Biophysical homoeostasis of leaf temperature: A
neglected process for vegetation and land-surface
modelling. Global Ecology and Biogeography, 26(9),
998–1007. https://doi.org/10.1111/geb.12614
Doughty, C. E., Keany, J. M., Wiebe, B. C., Rey-Sanchez, C., Carter, K.
R., Middleby, K. B., Cheesman, A. W., Goulden, M. L., Rocha, H. R. da,
Miller, S. D., Malhi, Y., Fauset, S., Gloor, E., Slot, M., Oliveras
Menor, I., Crous, K. Y., Goldsmith, G. R., & Fisher, J. B. (2023).
Tropical forests are approaching critical temperature thresholds.
Nature, 1–7. https://doi.org/10.1038/s41586-023-06391-z
Drake, J. E. (2023). A data-intensive documentation of
plant ecosystem thermoregulation across spatial and temporal scales.
New Phytologist, 238(3), 921–923. https://doi.org/10.1111/nph.18819
Drake, J. E., Harwood, R., Vårhammar, A., Barbour, M. M., Reich, P. B.,
Barton, C. V. M., & Tjoelker, M. G. (2020). No evidence of
homeostatic regulation of leaf temperature in Eucalyptus parramattensis
trees: integration of CO2 flux and oxygen isotope methodologies. New
Phytologist, 228(5), 1511–1523. https://doi.org/10.1111/nph.16733
Duursma, R. A. (2015). Plantecophys - An R Package for Analysing and
Modelling Leaf Gas Exchange Data. PLOS ONE, 10(11),
e0143346. https://doi.org/bkmj
Franklin, O., Harrison, S. P., Dewar, R., Farrior, C. E., Brännström,
Å., Dieckmann, U., Pietsch, S., Falster, D., Cramer, W., Loreau, M.,
Wang, H., Mäkelä, A., Rebel, K. T., Meron, E., Schymanski, S. J.,
Rovenskaya, E., Stocker, B. D., Zaehle, S., Manzoni, S., … Prentice, I.
C. (2020). Organizing principles for vegetation dynamics. Nature
Plants, 6(5), 444453. https://doi.org/ghmz7g
Guo, Z., Still, C. J., Lee, C. K. F., Ryu, Y., Blonder, B., Wang, J.,
Bonebrake, T. C., Hughes, A., Li, Y., Yeung, H. C. H., Zhang, K., Law,
Y. K., Lin, Z., & Wu, J. (2023). Does plant ecosystem
thermoregulation occur? An extratropical assessment at
different spatial and temporal scales. New Phytologist,
238(3), 1004–1018. https://doi.org/10.1111/nph.18632
Harrison, S. P., Cramer, W., Franklin, O., Prentice, I. C., Wang, H.,
Brännström, Å., Boer, H., Dieckmann, U., Joshi, J., Keenan, T. F.,
Lavergne, A., Manzoni, S., Mengoli, G., Morfopoulos, C., Peñuelas, J.,
Pietsch, S., Rebel, K. T., Ryu, Y., Smith, N. G., … Wright, I. J.
(2021). Eco-evolutionary optimality as a means to improve
vegetation and land-surface models. New
Phytologist, 231(6), 2125–2141. https://doi.org/10.1111/nph.17558
Helliker, B. R., & Richter, S. L. (2008). Subtropical to boreal
convergence of tree-leaf temperatures. Nature,
454(7203), 511–514. https://doi.org/10.1038/nature07031
Jiang, C., Ryu, Y., Wang, H., & Keenan, T. F. (2020). An
optimality-based model explains seasonal variation in C3 plant
photosynthetic capacity. Global Change Biology,
26(11), 6493–6510. https://doi.org/10.1111/gcb.15276
Joshi, J., Stocker, B. D., Hofhansl, F., Zhou, S., Dieckmann, U., &
Prentice, I. C. (2022). Towards a unified theory of plant photosynthesis
and hydraulics. Nature Plants. https://doi.org/10.1038/s41477-022-01244-5
Körner, C., & Hiltbrunner, E. (2018). The 90 ways to describe plant
temperature. Perspectives in Plant Ecology, Evolution and
Systematics, 30, 16–21. https://doi.org/10.1016/j.ppees.2017.04.004
Leuning, R., Kelliher, F. M., Pury, D. G. G., & Schulze, E.-D.
(1995). Leaf nitrogen, photosynthesis, conductance and transpiration:
scaling from leaves to canopies. Plant, Cell and Environment,
18(10), 1183–1200. https://doi.org/10.1111/j.1365-3040.1995.tb00628.x
Mahan, J. R., & Upchurch, D. R. (1988). Maintenance of constant leaf
temperature by plants. Hypothesis-limited
homeothermy. Environmental and Experimental Botany,
28(4), 351–357. https://doi.org/10.1016/0098-8472(88)90059-7
Maire, V., Martre, P., Kattge, J., Gastal, F., Esser, G., Fontaine, S.,
& Soussana, J.-F. (2012). The Coordination of Leaf Photosynthesis
Links C and N Fluxes in C3 Plant Species. PLoS ONE,
7(6), e38345. https://doi.org/10.1371/journal.pone.0038345
Michaletz, S. T., Weiser, M. D., McDowell, N. G., Zhou, J., Kaspari, M.,
Helliker, B. R., & Enquist, B. J. (2016). The energetic and carbon
economic origins of leaf thermoregulation. Nature Plants,
2(9), 16129. https://doi.org/10.1038/nplants.2016.129
Muir, C. D. (2019). tealeaves: an R package for modelling leaf
temperature using energy budgets. AoB PLANTS, 11(6),
plz054. https://doi.org/10.1093/aobpla/plz054
Peng, Y., Bloomfield, K. J., Cernusak, L. A., Domingues, T. F., &
Colin Prentice, I. (2021). Global climate and nutrient controls of
photosynthetic capacity. Communications Biology, 4(1),
462. https://doi.org/10.1038/s42003-021-01985-7
Prentice, I. C., Dong, N., Gleason, M. S., Maire, V., & Wright, J.
I. (2014). Balancing the costs of carbon gain and water transport:
Testing a new theoretical framework for plant functional ecology.
Ecology Letters, 17(1), 82–91. https://doi.org/gf9w4m
Prentice, I. C., Liang, X., Medlyn, B. E., & Wang, Y.-P. (2015).
Reliable, robust and realistic: the three R’s of next-generation
land-surface modelling. Atmospheric Chemistry and Physics,
15(10), 5987–6005. https://doi.org/10.5194/acp-15-5987-2015
Smith, N. G., & Dukes, J. S. (2013). Plant respiration and
photosynthesis in global-scale models: Incorporating
acclimation to temperature and CO2. Global Change Biology,
19(1), 4563. https://doi.org/f4gv3p
Still, C. J., Page, G., Rastogi, B., Griffith, D. M., Aubrecht, D. M.,
Kim, Y., Burns, S. P., Hanson, C. V., Kwon, H., Hawkins, L., Meinzer, F.
C., Sevanto, S., Roberts, D., Goulden, M., Pau, S., Detto, M., Helliker,
B., & Richardson, A. D. (2022). No evidence of canopy-scale leaf
thermoregulation to cool leaves below air temperature across a range of
forest ecosystems. Proceedings of the National Academy of
Sciences, 119(38), e2205682119. https://doi.org/10.1073/pnas.2205682119
Still, C. J., Rastogi, B., Page, G. F. M., Griffith, D. M., Sibley, A.,
Schulze, M., Hawkins, L., Pau, S., Detto, M., & Helliker, B. R.
(2021). Imaging canopy temperature: shedding (thermal) light on
ecosystem processes. New Phytologist, 230(5),
1746–1753. https://doi.org/10.1111/nph.17321
Stocker, B. D., Wang, H., Smith, N. G., Harrison, S. P., Keenan, T. F.,
Sandoval, D., Davis, T., & Prentice, I. C. (2020). P-model v1.0: an
optimality-based light use efficiency model for simulating ecosystem
gross primary production. Geoscientific Model Development,
13(3), 1545–1581. https://doi.org/10.5194/gmd-13-1545-2020
Stocker, B. D., Zscheischler, J., Keenan, T. F., Prentice, I. C.,
Peñuelas, J., & Seneviratne, S. I. (2018). Quantifying soil moisture
impacts on light use efficiency across biomes. New Phytologist,
218(4), 14301449. https://doi.org/gg3sk4
Stocker, B., & Hufkens, K. (2021). Rpmodel v1.2.0: R package
implementing the p-model. Zenodo. https://doi.org/10.5281/ZENODO.3359706
Vinod, N., Slot, M., McGregor, I. R., Ordway, E. M., Smith, M. N.,
Taylor, T. C., Sack, L., Buckley, T. N., & Anderson-Teixeira, K. J.
(2023). Thermal sensitivity across forest vertical profiles: patterns,
mechanisms, and ecological implications. New Phytologist,
237(1), 22–47. https://doi.org/10.1111/nph.18539
Wang, H., Prentice, I. C., Keenan, T. F., Davis, T. W., Wright, I. J.,
Cornwell, W. K., Evans, B. J., & Peng, C. (2017). Towards a
universal model for carbon dioxide uptake by plants. Nature
Plants, 3(9), 734–741. https://doi.org/10.1038/s41477-017-0006-8
Wang, Y.-P., & Leuning, R. (1998). A two-leaf model for canopy
conductance, photosynthesis and partitioning of available energy I:
Agricultural and Forest Meteorology, 91(1-2), 89–111.
https://doi.org/10.1016/S0168-1923(98)00061-6